🎨
Explainable-AI
  • Explainable AI
  • Preface
  • How to use this book?
  • Contents
  • What is Explainable AI?
  • Why do we need Explainablity?
  • Explainable systems and Black box systems
  • Types of Explainability Techniques
  • Explainable Models
    • Linear Regression
      • Assumptions
      • Model
      • Statistical Interpretation
    • Decision Trees
      • How Do They Work?
      • Creating the model
      • Interpretation
  • Explainability Techniques for Classical ML
    • SHAP (SHapley Additive exPlanations)
    • Surrogate model
    • LIME (Local Interpretable Model-Agnostic Explanations)
    • PDP (Partial Dependence Plot)
    • ICE (Individual Conditional Expectation Plots)
    • ALE (Accumulated Local Effects Plot)
  • Datasets
    • Medical Cost Personal Dataset
    • Telecom Churn Dataset
    • Sales Opportunity Size Dataset
    • Pima Indians Diabetes Dataset
  • Implementation of these techniques on different models
    • Logistic Regression - SHAP
    • Random Forest - LIME
    • GBM - PDP
    • GBM - ICE
    • Deep Learning - Surrogate
  • Future scope
  • Contributors
  • Citing this Book
Powered by GitBook
On this page

Was this helpful?

Explainability Techniques for Classical ML

Explainability of models on Tabular datasets

In this section onwards we will talk about the techniques used for explaining black-box models. To being with we will deal with classical ML models dealing with tabular datasets.

Tabular datasets are data structured into rows and columns, where each row contains the same number of cells or columns.

PreviousInterpretationNextSHAP (SHapley Additive exPlanations)

Last updated 3 years ago

Was this helpful?