🎨
Explainable-AI
  • Explainable AI
  • Preface
  • How to use this book?
  • Contents
  • What is Explainable AI?
  • Why do we need Explainablity?
  • Explainable systems and Black box systems
  • Types of Explainability Techniques
  • Explainable Models
    • Linear Regression
      • Assumptions
      • Model
      • Statistical Interpretation
    • Decision Trees
      • How Do They Work?
      • Creating the model
      • Interpretation
  • Explainability Techniques for Classical ML
    • SHAP (SHapley Additive exPlanations)
    • Surrogate model
    • LIME (Local Interpretable Model-Agnostic Explanations)
    • PDP (Partial Dependence Plot)
    • ICE (Individual Conditional Expectation Plots)
    • ALE (Accumulated Local Effects Plot)
  • Datasets
    • Medical Cost Personal Dataset
    • Telecom Churn Dataset
    • Sales Opportunity Size Dataset
    • Pima Indians Diabetes Dataset
  • Implementation of these techniques on different models
    • Logistic Regression - SHAP
    • Random Forest - LIME
    • GBM - PDP
    • GBM - ICE
    • Deep Learning - Surrogate
  • Future scope
  • Contributors
  • Citing this Book
Powered by GitBook
On this page

Was this helpful?

Preface

This book aims to provide a practical guide for using Explainable AI methods accompanied by implementation on Google collaboratory and state-of-the-art tools for the same. If you are interested in understanding how AI Systems make a specific decision, then this is the right place for you.

The focus will be on using the explainable techniques with different kinds of AI Systems. The main concentration will be on implementing these techniques using python. Everything will be accompanied by a brief explanation.

PreviousExplainable AINextHow to use this book?

Last updated 3 years ago

Was this helpful?